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The SM Higgs boson

- Higgs boson discovery in Run | at LHC
w Mmy=125.5GeV

- Higgs boson decays to = Gauge bosons
and leptons+quarks

- Signal strength measurements =
coupling constant measurements

* Run Il at LHC = deviations from SM
couplings? NP resonances above 1TeV?

« SM description seems to be working
but is not complete

5 GeV

Events / 1

S/(S+B) Weighted

1500 &

1000}

)
o
o

o

CMS-PLB716(2012)

CMS

\s=7TeV,

L=51fb"'ys=8TeV,.L=5.3fb"

| ¢ Data
I S+B

...... B Fit
RES

[ . 20

Unwei

ghted

Fit
Component

| | |

730
m,, (GeV) ]

S b
110

120 130 140

Tl
150

m,, (GeV)



The SM Higgs boson

- Higgs boson discovery in Run | at LHC
w Mp=125.5GeV

- Higgs boson decays to wGauge bosons
and leptons+quarks

- Signal strength measurements =
coupling constant measurements

* Run Il at LHC = deviations from SM
couplings? NP resonances above 1TeV?

« SM description seems to be working
but is not complete
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The SM Higgs boson

- fine tuning of the EW scale

- triviality of the SM Higgs quartic coupling

« SM vacuum instability

- flavor problem

* neutrino masses

« dark matter candidates



The SM Higgs boson

- fine tuning of the EW scale

- triviality of the SM Higgs quartic coupling

-+ SM vacuum instability

. flavor prc. COMPOSIteness of the Higgs boson

* neutrino masses /
‘ « dark matter candidates '




Composite Higgs models

* the Higgs boson is not an elementary scalar particle = composite bound
state of new strong dynamics

» Technicolor Higgs:

v the new sector breaks the EW symmetry through a technifermion condensate
v the Higgs is identified with the lightest scalar excitation of the condensate

v can be light due to interactions with SM particles (obtained from ETC dynamics)
[Foadi et al., PRD87(095001)] [Di Chiara et al.,arxiv:1405.7154] ” 5

v walking coupling and large anomalous mass dimension y=1
v the Higgs is identified with the technidilaton, from broken scale invariance

[Yamawaki et al., PRL56(1986)] [Bando et al.,PLB178(1986)]

vis naturally light thanks to its (pseudo-)NGB origin muiggs 0.5 — My

UVEW \/NdF

- Walking Technicolor Higgs:
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Composite Higgs models

LH Coll. PoS(2013)062
Triplet and singlet masses from 0'" correlators
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Goldstone Higgs dynamics

- a composite Higgs can emerge as a scalar pseudo-NGB from breaking of a
global symmetry in a new strong sector at the TeV scale

* phenomenologically interesting and well studied models are based on the
breaking pattern SU(4)-)Sp(4) (equivalently 80(6)980(5)) [Galloway et al., JHEP10(2010)89]

- a realization of this framework has been studied recently, showing how SU(4)
can break to Sp(4) using a SU(2) gauge theory with 2 flavors in the
fundamental representation [Cacciapaglia&Sannino, JHEP04(2014)111]

v SU(4)/Sp(4) coset gives 5 NGBs = 3 pseudoscalars and 2 scalars

v different choices of the quark condensate can be used when embedding the strong sector with
the EW sector

v interplay between the 2 scalars NGBs and the lightest excitation of the condensate depending on
the vacuum alignment give different scenarios [talk by A.Hietanen 2C]



Higgs and dark matter candidates

* interest in this special theory is not limited to Higgs compositeness:

* models for composite DM have been recently studied based on this
framework, without connection with EW symmetry breaking suceyanei,

PRD87(043510)]

* a model for dark nucleosynthesis based on the same strong sector now

EXIStS etmold et al., arxiv:1406.2276,arxiv:1406.4116] [talk by W.Detmold 8C]

 for Higgs compositeness, it is important to determine the dynamical mass of
the isosinglet scalar particle in the strong sector (before the EW embedding)
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‘study the isosinglet scalar channel on the Iatticel




L attice simulations with FUEL

- FUEL (Framework for Unified Evolution of Lattices) it’s a lightweight and
flexible wrapper for level 3 USQCD libraries with focus on lattice generation
for BSM theories [https://github.com/jcosborn/qhmc] [See J. Osborn’s talk in 1F]

- capabilities to do arbitrary number of colors, dimensions and flavors
- Staggered fermion formulations, as well as Wilson ones are included

+ use HMC to generate O(10°) trajectories for SU(2) with Wilson plaquette
gauge action and 2 Wilson fermions

» one coupling B=2.2, one volume 323x64, six bare fermion masses
mo={-0.68,-0.70,-0.72,-0.735,-0.75,-0.755}



Glueball spectroscopy: operators

eigenstates of the Hamiltonian are classified according to the J1 A, A, E T, T,
irreducible representations of the cubic group o1 0 0 0 0
110 0 0 1 0
2/0 0 1 0 1
1A1(1), A2(1), E(2), T1(3), T2(3)} 310 L0 1
411 0 1 1 1
suitable gauge-invariant operators must be constructed that ‘
respect the symmetries
a)y :u b) —> ‘ c)
1 (R) 1 R -
Oct) =75 ) T | [ U] 0 =23 al?Ral0c(1)] —1
x€L3 leW(x) a=1 _ _ 5
RN

vacuum contributions must be subtracted in the scalar case <

O () — (0]OAD) |0) I — H
a : d

improved operators are obtained by blocking and smearing

algorithms Lucini, Rago, ER
JHEP08(2010)



Glueball spectroscopy: variational analysis

basis of operators = {01 (t), e ooy On (t)}

matrix of correlators =

generalised eigenvalue problem =

ground state correlator fit (a=0) =>

« the effective mass plateaux is used to determine the fitting window on the correlator



The scalar glueball

C(t)/C(0)

Scalar glueball normalized correlator: $=2.2 m,=-0.75 m_=0.2649(16)
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The scalar glueball
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The scalar glueball




Conclusions and future directions

- States in the isosinglet scalar channel have been investigated with gluonic
operators, those coupling to glueballs in a pure gauge theory

* The ground and the first excited state are heavier than the isotriplet vector
meson in the mass region explored

« Contributions due to multi-pion states become relevant in the light mass
region

* Finite volume effects are being investigated for the lightest mass point on a
483x96 lattice

A fermionic isosinglet scalar correlator, including the disconnected diagram, is
being measured to address the mixing with the ground state
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